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The disconnectivity graph �DG� is widely used to represent energy landscapes. Although powerful numerical
methods have been developed to construct DGs for continuous potential-energy surfaces, they have difficulties
in applications to discrete Hamiltonians as the case of spin-glass models. When the configuration space is large,
brute force enumeration of all configurations to build a DG is not practical. We propose an alternative approach
to construct DGs based on recursive partition of Monte Carlo samples from microcanonical ensembles. To
characterize energy landscapes, we define the local density of states �LDOS� on a DG, with which one can
compute many thermodynamic properties over local energy basins for any temperature. Estimation of LDOS is
developed with DG construction. We further propose the concepts of tree entropy and local escape probability,
both of which are functions of local density of states, to capture the symmetry and the roughness of a
Boltzmann distribution, respectively. Our approach is applied to a study of the Sherrington-Kirkpatrick spin-
glass model with N varying between 20 and 100 spins. We observe that the energy landscape is extremely
asymmetric and there exists a sharp increase in local escape probability preceding the transition from spin glass
to paramagnetic phase.
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I. INTRODUCTION

To understand complex systems, theoretical and numeri-
cal studies have been conducted to characterize the energy
landscapes of spin-glass models �1–3�. Theoretical results on
some characteristics of the energy landscapes were obtained,
such as properties of ground states and metastable states of
Ising spin glasses �4–6�. Numerical analyses have also been
performed to capture various aspects of spin glasses, includ-
ing local energy minima �7–9�, valley structures �10,11�,
low-energy dynamics �12�, and folding properties �13�
among others. To explore a global picture, disconnectivity
graphs �DGs� or barrier trees �14–16� were constructed for
spin glasses �17–20� with further extensions to disconnectiv-
ity networks �21� and free-energy landscapes �22–24�. How-
ever, due to the discrete nature of the Hamiltonians �1,2� and
the exponential complexity of spin glasses, there are difficul-
ties in constructing and characterizing the DGs of their en-
ergy landscapes for large systems. Although numerical ap-
proaches to DG construction have been developed via the
identification of stationary points on a potential-energy sur-
face in chemical physics �e.g., �25,26��, they are not directly
applicable to spin glasses since gradients and eigenvectors
are not well defined for a discrete Hamiltonian. Therefore,
previous works on DGs of spin-glass models have been fo-
cused on moderate system sizes of 20–30 spins, e.g.,
�17,18,20,21�. For such systems, it is possible to detect all
critical states �local minima and energy barriers� via enu-
meration of all configurations or all low-energy configura-
tions. Valuable insights on the energy landscapes of spin
glasses have been provided by these studies.

Clearly, extensive enumeration of all local minima and
barriers to construct a complete DG of a spin-glass model is

not feasible for systems with more than 40 spins. In this
work, we make an attempt to study main features of spin-
glass energy landscapes rather than building a full DG. We
simulate Monte Carlo samples of configurations at a wide
energy range via the equienergy �EE� sampler �27�, which is
able to construct microcanonical ensembles of a Hamil-
tonian. Then we estimate a DG with the samples from all
microcanonical ensembles through a bottom-up partition
�BUP� algorithm. In this way, the estimated DG represents a
meaningful approximation to the underlying energy land-
scape because it is constructed with Monte Carlo samples
and thus naturally emphasizes on more important regions
�with high Boltzmann probabilities� in the configuration
space. Furthermore, we link the concept of the density of
states to a DG via the definition of local density of states.
The local density of states �LDOS� gives the number of con-
figurations located in a particular energy basin or superbasin
for a given energy level �to be defined more precisely later�.
Given LDOS, one can conveniently compute Boltzmann av-
erages over various local basins for any temperature, which
provides a useful means to characterize statistical and ther-
modynamic properties of the underlying Hamiltonian. We
define tree entropy and local escape probability based on
LDOS for a global characterization of the symmetry and the
roughness of energy landscapes, respectively. These statistics
are expected to convey more quantitative information for
energy landscape characterization than classifying DGs by
their shapes and topologies �e.g., �28��.

In this study we focus on the energy landscape of the
Sherrington and Kirkpatrick �SK� spin glass �2,29�. In this
model, a piece of spin glass is represented by N spins, S
= �S1 ,S2 , . . . ,SN�, each of which has two orientations ��1�. A
random interaction Jij from a Gaussian distribution N�J0 ,J2�
is assigned independently to each pair of spins Si and Sj.
Given the interactions, the Hamiltonian of the system is
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h�S� = − �
i�j

JijSiSj , �1�

in which the summation is running over all pairs of spins
�not only nearest neighbors�. Accordingly, the Boltzmann
distribution of the SK spin-glass model at temperature T is

pB�S;T� =
1

Z�T�
exp�− h�S�/T� , �2�

where Z�T�=�exp�−h�S� /T� is the partition function.
Throughout the paper, the Boltzmann constant kB is absorbed
into the temperature T as in Eq. �2�.

This paper is organized into six sections. We introduce
LDOS, tree entropy, and local escape probability in Sec. II
after a brief review of the disconnectivity graph. The
bottom-up partition algorithm for estimating DGs and LDOS
from microcanonical ensembles is described in Sec. III. We
illustrate our method in Sec. IV on a series of energy func-
tions for which theoretical calculations are available. In Sec.
V we study the energy landscape and thermodynamics of SK
spin glasses for N ranging between 20 and 100. The paper
concludes with discussions in Sec. VI.

II. LOCAL DENSITY OF STATES

In this section we first review the disconnectivity graph of
an energy function and introduce necessary notations. The
local density of states is then defined on a DG based on
which we will propose two quantities, the tree entropy and
the local escape probability, to characterize energy land-
scapes.

As introduced in �14�, a DG summarizes the hierarchy
among various basins and superbasins in the configuration
space. The topology of a DG is a tree as illustrated in Fig. 1.
To connect a DG with the density of states, we reformulate
an equivalent definition in terms of the disconnectedness
among sublevel sets of the energy function,

A�u� � �x�h�x� � u� , �3�

for all energy levels u. Suppose that the sublevel set A�u�
contains K�u� connected components �Ak�u� �k=1, . . . ,K�u��.
The root of the tree is defined at the energy level u1 where
the sublevel set A�u1� becomes disconnected, i.e., u1
=inf�u �A�u� is connected�. We then define its kth child
node, for k=1, . . . ,K�u1�, at the energy level u1k such that
A�u1k��Ak�u1� becomes disconnected or reaches a local

minimum. That is, u1k
=inf�u �A�u��Ak�u1� is connected and nonempty�. In the
figure, the child nodes of u1 are denoted by u2 and u3. A
recursive application of the above definition to every internal
node gives the tree topology of a DG. The leaves �terminal
nodes� of the tree correspond to the local minima of h�x� and
the internal nodes correspond to the energy barriers that
separate the minima. In this paper, a DG and its correspond-
ing tree are used as interchangeable terms.

A. Definition of LDOS

One of the most important concepts in statistical physics
is the density of states ��u�, i.e., the number of all configu-
rations for an energy level u. Many thermodynamic quanti-
ties can be calculated directly with ��u� for any temperature
T. For example, the partition function Z�T�, the internal en-
ergy U�T�, and the specific heat C�T� can be calculated by

Z�T� =	 ��u�e−u/Tdu ,

U�T� =
1

Z�T�	 u��u�e−u/Tdu ,

C�T� =
�U�T�

�T
=

1

T2
	 u2��u�e−u/Tdu

Z�T�
− �U�T��2� , �4�

in which only univariate integrals, or summations for dis-
crete Hamiltonians, are involved once ��u� is provided.

Although extremely useful, the density of states can only
facilitate the computation of overall Boltzmann averages
such as Eq. �4�. To obtain a full picture of the energy land-
scape of a Boltzmann distribution, it is desired to compute
thermodynamic and statistical quantities over various local
domains in the configuration space. Such local domains can
be defined by edges on a disconnectivity graph. For example,
an edge with a terminal node as one of its end points corre-
sponds to a unique local domain of a local minimum. On the
tree in Fig. 1, the edge between nodes u1 and u3, denoted by
E�u1 ,u3�, represents a local basin around the local minimum
u3. We call it the �connected� basin of the local minimum.
Statistical properties of connected basins are useful for char-
acterizing the behaviors of local minima �metastable states�.
For this purpose, we introduce the definition of the local
density of states. Index all the edges on a tree by a set of
integers I= �1, . . . ,Ke�. For any configuration x, we denote
by I�x� the index of the edge to which x belongs. For ex-
ample, a configuration in the connected basin of the local
minimum u3 belongs to the edge E�u1 ,u3�. Note that the
vertical axis of a DG represents energy level u �Fig. 1�. All
the configurations in a microcanonical ensemble,

X�u� � �x�h�x� = u� , �5�

can be partitioned according to their connectivity on the tree.
That is, configurations in X�u� that can be connected via
pathways with energy �u are identified into one group,

FIG. 1. A hypothetical energy function �left� and its DG
�right�.
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which maps to a point on an edge with index i at energy u.
Such a group of configurations is called a connected micro-
canonical ensemble �CME�

X�i��u� � �x�h�x� = u,I�x� = i�, i � I . �6�

The local density of states ��i��u� is defined as the number of
configurations in X�i��u�. On the tree of Fig. 1, if the index of
the edge E�u1 ,u3� is i and u3�u�u1, then ��i��u� is the
number of configurations in the connected basin of the local
minimum u3 for the energy level u.

If local density of states is provided for all energies and
edges, one can compute directly many useful statistical and
thermodynamic quantities of local basins and domains de-
fined by an energy landscape at any temperature. Denote the
two end-point energies of edge i by Li�Bi. The local parti-
tion function Z�i��T�, the probability mass P�i��T�, and the
local energy U�i��T� of the edge at temperature T can be
defined and computed by

Z�i��T� = 	
Li

Bi

��i��u�e−u/Tdu , �7�

P�i��T� =
Z�i��T�
Z�T�

, �8�

U�i��T� =
1

Z�i��T�	Li

Bi

u��i��u�e−u/Tdu . �9�

Such quantities, called local Boltzmann averages, provide
basic information for characterizing the underlying energy
landscape. Furthermore, we define

V�i� = 	
Li

Bi

��i��u�du �10�

as the volume of edge i. For example, the volume of the edge
E�u1 ,u3� in Fig. 1 gives the number of configurations in the
connected basin of u3 and its local probability mass �8� re-
ports the probability of observing configurations in this basin
under the Boltzmann distribution at temperature T.

B. Tree entropy

We define the tree entropy to measure the degree of sym-
metry of energy landscapes via the LDOS. From Eq. �6� one
sees that the microcanonical ensemble X�u� is partitioned
into a collection of CMEs X�i��u� for each energy level u.
The number of CMEs for the energy level u equals the num-
ber of connected components of the sublevel set A�u� �3�,
denoted by K�u�. On a DG, K�u� is the number of intersec-
tions between the tree and the horizontal line at the energy
level u. For example, K�u�=2 for u2�u�u1 on the tree of
Fig. 1. If we use I�u� to denote the collection of indices of
the edges that intersect with the horizontal line at energy u,
then its size �I�u��=K�u� and we have the following relation-
ship:

��u� = �
i�I�u�

��i��u� . �11�

Since a Boltzmann distribution pB�x ;T��exp�−h�x� /T� re-
stricted to any microcanonical ensemble X�u� is uniform for
any temperature, the probability that a configuration in X�u�
belongs to the CME X�i��u� is simply ��i��u� /��u� for i
�I�u�. The entropy of this discrete distribution measures the
degree of symmetry of the tree at energy u in terms of the
relative sizes of the CMEs. Using bits as the unit, we define
the entropy of the tree at energy u as

Str�u� = − �
i�I�u�

��i��u�
��u�

log2���i��u�
��u�  , �12�

which varies between 0 and log2 K�u� bits. If the LDOS
��i��u� is exactly identical for all CMEs, Str�u� reaches its
maximal value log2 K�u�. If the density of states ��u� is
dominated by one of the CMEs, then Str�u� is close to 0.

We further define the �average� entropy of the whole tree
as

Str =
1

B − u0
	

u0

B

Str�u�du , �13�

where u0 is the energy of the global minimum and B is the
energy of the highest barrier. The tree entropy Str captures
symmetry beyond the shape of a tree. The tree in Fig. 2�a�
has three terminal edges of identical end-point energies and,
thus, the topology is symmetric. The energy functions in
Figs. 2�b� and 2�c� have exactly the same tree topology as
shown in Fig. 2�a�, but the levels of their tree entropy are
very different. The tree entropy of Fig. 2�b� is high because
the volumes of the three basins �Eq. �10�� are comparable,
but the tree entropy of Fig. 2�c� is close to zero because the
volume of the middle basin is much larger than the volumes
of the other two basins.

C. Local escape probability

Next we propose an index to quantify the roughness of a
Boltzmann distribution at a given temperature T. Suppose
that we are sampling from pB�x ;T��exp�−h�x� /T� via a Me-
tropolis algorithm �30�. If a proposed Metropolis move re-
sults in an energy increase of �u, the probability of accepting
this proposal is exp�−�u /T�. Assuming that our proposal
gives equal chance to reach all possible levels of energy
increment, the probability distribution for an �accepted� en-
ergy increment is

(a) (b) (c)

FIG. 2. An illustration of the tree entropy.
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p��u;T� =
1

T
exp�− �u/T�, �u � 0. �14�

Consider edge i on the tree of a DG with end-point energies
Li�Bi. Suppose that the current configuration x is on this
edge with energy u, i.e., x�X�i��u�. Under the assumption of
Eq. �14�, the probability for the Metropolis sampler to escape
from the edge and reach an energy level higher than the
barrier Bi by an energy increment is exp�−�Bi−u� /T�. We
call such an event a local escape. Averaged over all possible
energy levels on edge i, the probability of a local escape on
this edge at temperature T is

PLE
�i� �T� = 	

Li

Bi

e−�Bi−u�/T 1

Z�i��T�
��i��u�e−u/Tdu =

V�i�e−Bi/T

Z�i��T�
,

�15�

where Z�i��T� is the local partition function �7� and V�i� is the
volume �10� of the edge.

Because the edge with the smallest local escape probabil-
ity will be the bottleneck for the communication of the Me-
tropolis sampler between different local basins, the minimum
local escape probability

PLE�T� = min
i�I

PLE
�i� �T� �16�

gives a meaningful index for the roughness of the distribu-
tion at temperature T. The smaller the PLE�T�, the higher the
roughness of the Boltzmann distribution. In addition, we de-
fine

TE�	� = max�T�PLE�T� � 	� �17�

as the escape temperature at level 	� �0,1�. Intuitively, the
chance of a local escape will be greater than 	 if the tem-
perature is as high as TE�	�.

III. METHODS

A. Equienergy sampler

To construct a reasonable estimate of the DG of an under-
lying energy landscape, we need to have Monte Carlo
samples of configurations at a wide range of energy levels,
which ideally cover all important portions of the energy
space �say, from the global minimum to the highest energy
barrier�. Examples of Monte Carlo methods which may
achieve this goal include the multicanonical ensemble meth-
ods �31–35�, the flat histogram methods �36,37�, stochastic
approximation for Monte Carlo �38,39�, parallel tempering
�40�, exchange Monte Carlo �41�, and the EE sampler �27�
among others. In this work, we employ the EE sampler to
simulate Monte Carlo samples for the construction of a DG.
Given an energy ladder H1� ¯ �HL and a temperature lad-
der T1� ¯ �TL, the EE sampler generates samples from a
sequence of Boltzmann distributions

pB�x;Ti,Hi� � exp�−
h�x� ∨ Hi

Ti
 , �18�

for i=1, . . . ,L. In the above equation, h�x�∨Hi
=max�h�x� ,Hi�, which flattens the part of the Hamiltonian

h�x� below Hi. Sampling from this truncated Hamiltonian
enables the sampler to explore high-energy portion �
Hi� of
the configuration space and to avoid being trapped to a deep
local energy basin. The energy and temperature ladders are
chosen such that one can obtain samples from most of the
energy levels. In practice, we set H1 and HL close to the
lower and the upper bounds of the energy range of interest,
respectively. The intermediate truncation energies are then
determined via a geometric progression. A global move, the
equienergy jump, is designed to enhance the sampling of
low-order distributions based on the empirical distributions
generated by high-energy high-temperature chains. Samples
from the EE sampler can be used to estimate the density of
states ��u� via an iterative approach. For more details on the
EE sampler, please see Ref. �27�.

B. Constructing DGs

In what follows, we assume that we have simulated
samples of configurations from a sequence of tempered-
truncated distributions �18� and for each configuration we
have recorded its energy. Denote the configurations simu-
lated from the ith distribution in Eq. �18� by �Xt

�i��t=1
n for 1

� i�L. For every energy level u, if we partition the empiri-
cal sublevel set

Â�u� � �Xt
�i��h�Xt

�i�� � u,1 � i � L,1 � t � n� �19�

into connected components, we will then obtain an estimated
DG of h�x�. Thus, after discretizing the energy space into
small bins with a sequence of energy levels u1� ¯ �uM
�here, M is often large�, our goal is to identify the connected

components of the empirical sublevel sets Â�m�� Â�um� for
m=1, . . . ,M. However, there are two technical difficulties to
consider. First, at a high-energy level, samples of configura-
tions are usually sparse since the configuration space in-
creases very fast with the increase of energy. Consequently,
one cannot determine connectivity simply based on directed
neighbors, but needs to rely on clustering algorithms and
statistical criteria to identify clusters of configurations. Sec-
ond, it will be more efficient to cluster empirical level sets

Ĉ�m� � �Xt
�i��h�Xt

�i�� � �um−1,um�,1 � i � L,1 � t � n�
�20�

for m=1, . . . ,M, where u0�−�. The reasons are that con-
figurations in a level set are approximately uniformly distrib-
uted and that the size of a level set is much smaller than that
of a sublevel set, which reduces the computational burden in
clustering.

These considerations motivate our development of the
bottom-up partition algorithm for constructing a DG from
Monte Carlo samples. Given a metric of the configuration
space we employ single-linkage clustering �SLC� �42� to par-
tition an empirical level set �20� into clusters. Starting from
singleton configurations, SLC recursively merges two closest
subsets of configurations according to nearest-neighbor dis-
tances �NND�. Clusters may then be identified with a chosen
distance threshold. Define the maximum NND of a cluster by
the nearest-neighbor distance between the two subsets of the
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cluster that are merged at the last step during SLC, i.e., the
maximal merging distance within the cluster. The BUP algo-
rithm is outlined as follows.

�1� Initialization: Perform SLC on Ĉ�1� to obtain clusters

�Ĉk
�1��1

K1 and their respective maximum NNDs �dk
�1��1

K1. Let

�Âk
�1��1

K1 = �Ĉk
�1��1

K1 be the clusters of Â�1�.
�2� Induction: For m=2, . . . ,M,

�a� perform SLC on Ĉ�m� to obtain clusters �Ĉi
�m��1

Km
�

and their maximum NNDs �ri
�m��;

�b� connect Ĉi
�m� and Âj

�m−1� if the NND between them
is �max�ri

�m� ,dj
�m−1�� for i=1, . . . ,Km

� and j
=1, . . . ,Km−1; and
�c� merge the resulting connected clusters to obtain

�Âk
�m��1

Km, the clusters of Â�m�, and update their maxi-

mum NNDs dk
�m�=max�ri

�m� ,dj
�m−1� � Ĉi

�m� , Âj
�m−1�� Âk

�m��
for k=1, . . . ,Km.

Clearly, the disconnectivity among �Âk
�m� �k=1, . . . ,Km ,m

=1, . . . ,M� is equivalent to the estimated structure of the
tree. Asymptotic properties and statistical applications of the
BUP algorithm are discussed in �43�. The exact method for
identifying clusters from SLC of spin-glass configurations
will be discussed in Sec. V.

C. Estimating local density of states

As we have mentioned, the density of states ��u� can be

estimated by the EE sampler. Denote by �̂m the estimate for
the mth discretized energy bin �1�m�M�. Since the range
of an energy bin �um=um−um−1 is designed to be small, the

empirical level set Ĉ�m� �Eq. �20�� can be regarded as a
sampled microcanonical ensemble X�um� �5�. Given an esti-
mated tree from the BUP algorithm, we can estimate the
local density of states for the mth energy bin from the em-

pirical level set Ĉ�m� and its connectivity on the estimated

tree. The BUP algorithm partitions Ĉ�m� into Km subsets, each
of which belongs to a cluster of the empirical sublevel set

Â�m�. Intuitively, the Km subsets of Ĉ�m�, i.e., Ĉ�m�� Âk
�m� �k

=1, . . . ,Km�, correspond to the intersections between the es-
timated tree and the horizontal line at energy um. They rep-
resent our sampled version of the CMEs X�i��um� for i
�I�um� �6�. Define

�̂m,k = �̂mnk
�m�/n�m�, for k = 1, . . . ,Km, �21�

where n�m� and nk
�m� are the numbers of configurations in Ĉ�m�

and Ĉ�m�� Âk
�m�, respectively. Because configurations in Ĉ�m�

are roughly uniform in distribution, �̂m,k�1�k�Km� gives a
reasonable estimate of the LDOS ��i��um� , i�I�um�, after

reindexing �̂m,k by the edges on the estimated tree. For no-
tational consistency, we denote the estimated local density of

states by ��̂m
�i� ,m=1, . . . ,M , i� Î�, where Î is the collection

of the edge indices of the estimated tree.
Our definition and estimation of LDOS have connections

to the superposition approximation approach, reviewed in
�44,45�, which dates back to early work on homogeneous
nucleation �e.g., �46–48��. However, the purpose and the

computation employed are different. In a superposition ap-
proach, the configuration space is partitioned into attraction
domains of local minima. Local density of states is approxi-
mated for each local minimum, and thermodynamic quanti-
ties, such as the partition function, are then calculated by the
summation of contributions from different local minima. In
this work, we start with an estimation of density of states
from the EE sampler and decompose the density of states for
every energy level into the LDOS of connected microcanoni-
cal ensembles. The goal is to calculate with LDOS statistical
and thermodynamic properties of various local minima and
local basins for any temperature. Such calculations will be
exact if the size of Monte Carlo samples approaches infinity.

IV. ILLUSTRATIVE EXAMPLE

In this section we illustrate the ideas and intuitions behind
LDOS, tree entropy, and local escape probability with an
example for which theoretical calculations are available. The
Hamiltonian of this example is given by

h�x� = min
1�i�K

�wi +
�x − �i�2

2�i
2 � , �22�

where x ,��R3 and K=4. This function contains K local
minima centered at �i with energy wi. The Hamiltonian re-
stricted to the connected basin of �i is a quadratic form and
the parameter �i

2 controls its local variance.
For all the following realizations of the Hamiltonian �22�,

we applied the same parameter setup in the EE sampler with
ten chains, each of 500 K samples. The energy ladder was set
between h0 and h0+50, where h0 is the global minimum of
h�x�, and the temperature ladder between 0.5 and 20, both
with geometric progression. We partitioned the energy space
�h0 ,h0+50� into M =200 small bins to estimate the density of
states. Then we randomly sampled 20% of the configurations
�to save computation� from each chain to form the input of
the BUP algorithm to construct DGs and estimate LDOS.
The above computation was repeated ten times indepen-
dently for each realization of Eq. �22�.

A. Local Boltzmann averages

In this section, we set wi= i−1 for i=1, . . . ,4, �1
2=�2

2=1,
�3

2=�4
2=2, �1= �0,0 ,0�, �2= �10,0 ,0�, �3= �10,10,0�, and

�4= �10,10,10�. The theoretical tree of this Hamiltonian is
shown in Fig. 3 and our estimated tree from the BUP algo-
rithm gives an identical topology.

Index the connected basin �terminal edge� of the mini-
mum �i by i �Fig. 3� and denote its barrier �upper end-point
energy� by Bi for i=1, . . . ,4. The volume of basin i for en-
ergy lower than a given level u� �wi ,Bi� can be calculated
up to a multiplicative constant from the quadratic form in Eq.
�22� via

V�i��u� � ��i
2�u − wi��p/2,

in which p=3 is the dimension of the space. Then the local
density of states
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��i��u� =
d

du
V�i��u� � ��i

2�p/2�u − wi�p/2−1, �23�

based on which one can compute local Boltzmann averages
over the basin. In particular, the sublevel set A�H�= �x �h�x�
�H�, with H=6, has four connected components, denoted
by Ai�H�, each containing a �i, for i=1, . . . ,4. They can be
understood as four separate energy wells �the part of the tree
below the dashed line in Fig. 3�. Suppose that we are inter-
ested in characterizing these energy wells. We may compute
various local Boltzmann averages, such as the local average
energies and the relative probabilities of these energy wells
as functions of the temperature T as follows:

Ui�T� �
	

Ai�H�
upB�x;T�dx

	
Ai�H�

pB�x;T�dx

=

	
wi

H

u��i��u�e−u/Tdu

	
wi

H

��i��u�e−u/Tdu

= wi + T
��H − wi�/T,p/2 + 1�

��H − wi�/T,p/2�
,

Pi�T� �
	

Ai�H�
pB�x;T�dx

	
A�H�

pB�x;T�dx

=

	
wi

H

��i��u�e−u/Tdu

	
0

H

��u�e−u/Tdu

=
��i

2�p/2e−wi/TTp/2��H − wi�/T,p/2�

�
k=1

4

��k
2�p/2e−wk/TTp/2��H − wk�/T,p/2�

,

where �y ,a�=�0
yta−1e−tdt is the incomplete gamma function

and pB�x ;T��exp�−h�x� /T� is the Boltzmann distribution.
The closed-form solutions are obtained by substituting the
expression of ��i��u� �Eq. �23�� into the above integrals.
Such quantities are very useful for understanding the neigh-
borhood of a local minimum, but need estimation in general.

We can estimate these local Boltzmann averages as func-
tions of temperature T directly with estimated LDOS,

Ûi�T� =

�
u�H

u�̂u
�i�e−u/T�u

�
u�H

�̂u
�i�e−u/T�u

,

P̂i�T� =

�
u�H

�̂u
�i�e−u/T�u

�
k

�
u�H

�̂u
�k�e−u/T�u

,

in which the LDOS �̂u
�i� is indexed by the discretized energy

level u and �u is the length of the corresponding energy bin.
We took 25 values of T evenly spaced between 0 and 5 to
compare our estimates against theoretical curves �Fig. 4�.
Our estimates are seen to be very accurate for all the tem-
peratures. The maximal standard deviations across estimates
from ten independent runs over all the temperatures were
0.02, 0.03, 0.006, and 0.01 for Ui�T�, and were 6�10−3, 5
�10−3, 5�10−3, and 3�10−3 for Pi�T�, for i=1, . . . ,4, re-
spectively. Please note that we obtained these local Boltz-
mann averages for all temperature levels with just one run of
EE sampling and BUP tree construction and there is no need
to sample from the Boltzmann distribution at all 25 different
temperatures.

B. Tree entropy

To help understand the intuition behind tree entropy, we
design the following parameters in the Hamiltonian �22�:
wi=0, �i

2=1 for i=1, . . . ,4, and �1= �x ,0 ,0�, �2= �a ,0 ,0�,
�3= �a ,a ,0�, and �4= �a ,a ,a−x�, where a=10 and x
� �0,a�. Under this setup, the theoretical value of the tree
entropy as a function of x is given by Str�x�=1+ ��a−x� /a�2,
which is a monotone decrease function for x� �0,a�. If x
=0, the tree of the DG is composed of four symmetric edges
with a common root �left panel of Fig. 5�. The entropy of the
tree Str�0�=2 bits, which means that one needs two binary
variables to code the four edges. If x is close to a, then �1
and �2 are close to each other and so are �3 and �4. The tree
is composed of two long internal edges each of which further
splits into two short terminal edges �right panel of Fig. 5�. In
this case the tree entropy is expected to be slightly greater
than one bit. For example, Str�8�=1.04. The tree entropy for
a few typical values of x is tabulated in Table I.

Given estimated �̂u
�i� and �̂u, one can approximate the

tree entropy at energy u by substituting them into Eq. �12�
and then calculate the average entropy by discretizing the
integral in Eq. �13�. We estimated the tree entropy of this
example for x=0,2 ,4 ,6 ,8 as reported in Table I, which in-
cludes the average and standard deviation �in parentheses�
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FIG. 3. The tree of the continuous Hamiltonian with the indices
of terminal edges.
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across ten independent runs. Since the local density of states
���i��u�� is identical across all the edges for every energy
level u, the entropy of the tree at energy u �Eq. �12�� reaches
its maximum. Consequently, it is not surprising that the tree
entropy was slightly underestimated compared to the theoret-
ical values.

C. Local escape probability

To elucidate the insight of local escape probability, we
manipulate the distances between local minima and their lo-
cal variances �i

2 in Eq. �22�. If the minima are moved further
away from each other or the local variances decrease, we
expect the local escape probabilities to decrease due to the
increase of energy barriers. We define a baseline parameter
set as wi=0 for all i, �1= �0,0 ,0�, �2= �a ,0 ,0�, �3
= �a ,a ,0�, and �4= �a ,a ,a�. In the first test, we set all �i

2

=1 and choose a=5,10,15 to obtain three Hamiltonians with
different distances between neighboring �i’s. In the second
test, we fix a=10 and let the local variances ��1

2 , . . . ,�4
2�

= �1,1 ,1 ,2�, �1,1,2,3�, or �1,2,3,4�. This gives rise to three
groups of parameters indexed as groups 1, 2, and 3 with
increasing local variances.

The estimation of the local escape probability of edge i at

temperature T �Eq. �15�� is straightforward with �̂u
�i�,

P̂LE
�i� �T� =

e−B̂i/T �
u��L̂i,B̂i�

�̂u
�i��u

�
u��L̂i,B̂i�

�̂u
�i�e−u/T�u

,

where L̂i and B̂i are the estimated lower and upper end-point
energies of the edge on the tree. For each parameter setting
in the two tests, we estimated the minimum local escape
probability PLE�T� for T� �0,20� �Fig. 6�. Two expected pat-
terns are observed: �1� The minimum local escape probabil-
ity increases with the temperature. �2� For a fixed tempera-
ture, PLE�T� is higher when the local minima are closer to
each other �with smaller a in Fig. 6�a�� or when the local
variances are larger �Fig. 6�b��.

A side-by-side comparison between the estimated escape

temperature T̂E�0.5� �Eq. �17�� and the length of the longest
edge on the theoretical tree, maxi�I�Bi−Li�, provides some
interesting quantitative understanding of the local escape
probability �Table II�. For all sets of parameters in this ex-

ample, T̂E�0.5� is roughly half of the length of the longest
edge. Intuitively, the longest edge �in terms of Bi−Li� on a
tree is most likely the bottleneck for the mixing of
Metropolis-based sampling and optimization �e.g., simulated
annealing �49��. If the current energy is at the midpoint of the

TABLE I. Entropy of the tree.

x Theory Estimation

0 2 1.943 �0.010�
2 1.64 1.604 �0.017�
4 1.36 1.330 �0.008�
6 1.16 1.132 �0.004�
8 1.04 1.016 �0.001�

FIG. 5. Two trees with different entropy.
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FIG. 4. Local Boltzmann averages of the energy wells of the four local minima, indexed by M1, M2, M3, and M4. �a� Estimated and
theoretical curves of Ui�T�; �b� Estimated and theoretical curves of Pi�T�. Theoretical curves are plotted as solid lines. Symbols of different
shapes report average estimates over ten runs.
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edge, the chance to accept a symmetric proposal that results
in a local escape, i.e., raising energy higher than the barrier,
is e−1�0.4 when the temperature T equals half of the edge
length. This crude calculation matches the definition of
TE�0.5�, the escape temperature at level 	=0.5. This result
also suggests that a Metropolis sampler for a Boltzmann dis-
tribution at T�TE�0.5� is expected to move freely between
different local basins of the Hamiltonian h�x�. Thus, an esti-
mated escape temperature can be used to set the highest tem-
perature for sampling and optimization.

V. SK SPIN-GLASS MODEL

A. EE sampling

We study the SK spin-glass model for N=20, 40, and 100
spins and choose J0=0 , J2=1 /N to generate the interactions
�Jij� in Eq. �1�. Under these parameters, there exists a phase
transition from spin glasses to paramagnetic phase at Tc=1
as N→� �29�. We generated 20 independent realizations of
the interaction parameters �Jij� �1� i , j�N� for each value
of N. The spin-glass model with a particular realization of
interactions is called a realization or a realized system. All
following computations were performed on 20 independent
realizations for each N.

To study the energy landscape, we simulated spin-glass
configurations from the Boltzmann distribution �2� via EE
sampling. We compared a few key thermodynamic quantities
estimated from our Monte Carlo sampling to their theoretical
values to verify the unbiasedness of our samples. The range
of the rescaled energy h�S� /N that is of interest for thermo-
dynamic simulation is between −0.8 and 0.2. Accordingly,
we applied the EE sampler to this problem with energy trun-
cation between �−0.8N and 0.2N� and temperature between
�0.4 and 0.1N�, both with geometric progression. The num-
ber of configurations in each chain and the total number of
chains were set in proportion to the size of a system as
100K�10, 200K�20, and 1000K�50 for N=20, 40, and
100, respectively. We then divided the energy space into M
=40, 80, and 500 bins to estimate the density of states for

N=20, 40, and 100, respectively. Given estimated �̂u, we
calculated the internal energy via

Û�T� =

�
u

u�̂ue−u/T�u

�
u

�̂ue−u/T�u
�24�

and the specific heat via

Ĉ�T� =
U2̂�T� − �Û�T��2

T2 �25�

for T� �0,4�, where U2̂�T� was calculated with �̂u similarly
to Eq. �24�. Please note that the energy u is rescaled in the
unit of N for both calculations. The estimated internal energy
and specific heat are compared to the theoretical curves as
N→� �29� in Fig. 7. Although the number of spins in our
simulation is not too large, the general tendency here is very
clear: the estimated Boltzmann averages approach consis-
tently the theoretical limits with the increase of N. From the
specific heat, we approximated the critical temperature by

T̂c=arg maxTĈ�T� and obtained T̂c=0.780�0.131,
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FIG. 6. The estimated PLE�T� as a function of temperature T for �a� test 1 and �b� test 2. The curves report average estimates from ten
independent runs.

TABLE II. The maximum edge length and the escape tempera-
ture. Note that the edge length is calculated from the theoretical tree

and T̂E�0.5� is the average estimate over ten runs with standard
deviation in parentheses.

Test 1 Test 2

a maxi�Bi−Li� T̂E�0.5� Group maxi�Bi−Li� T̂E�0.5�

5 3.125 1.66�0.052� 1 12.5 6.33�0.157�
10 12.5 6.67�0.095� 2 12.5 6.04�0.084�
15 28.125 15.09�0.166� 3 8.58 4.01�0.129�
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0.840�0.118, and 0.860�0.140 for N=20, 40, and 100 re-
spectively, where � indicates one standard error. As ex-
pected, the difference between the estimated critical tempera-
ture and the theoretical Tc=1 decreases with the increase of
N. These results demonstrate that the configurations simu-
lated by the EE sampler formed a good representation for the
microcanonical ensembles and the density of states was ac-
curately estimated. They provided the raw materials for un-
derstanding the energy landscape of the spin-glass model.

B. Connectivity and clustering

We define connectedness for the configuration space of
the spin-glass model via the Hamming distance, i.e., the
number of different spins between two configurations. Two
configurations are called connected neighbors if they only
differ by one spin. Such definition of connectedness has been
used in many previous studies �e.g., �11,12��. Furthermore, if
one flips the orientations of all the N spins, the system shows
exactly the same statistical properties determined by the
Hamiltonian �1�. Thus, in this work we identify two configu-
rations with completely reverse spins. This can be achieved
by modifying the distance between two configurations Sa and
Sb to

d�Sa,Sb� = min�dH�Sa,Sb�,dH�Sa,− Sb�� , �26�

in which dH denotes the Hamming distance.
Suppose that we have simulated n+1 configurations,

S1 , . . . ,Sn+1, from a microcanonical ensemble X�u�. Apply-
ing single-linkage clustering on the n+1 configurations gen-
erates n NNDs, denoted by d1 ,d2 , . . . ,dn, which join closest
subsets sequentially. Motivated by the observation that the
histogram of di �i=1, . . . ,n� decays exponentially if the mi-
crocanonical ensemble is connected, we model them by a
geometric distribution,

P�di��� = �di�1 − ��, di = 0,1, . . . , �27�

where �� �0,1� is an unknown parameter. We rank di to
obtain the order statistics d�1��d�2�� ¯ �d�n�. If X�u� con-
sists of K+1 connected components, one expects the largest
K NNDs to be significantly greater than the remaining ones

when n is large. Consequently, our goal is translated to detect
overly large distances �between-cluster NNDs� that are very
unlikely to observe from the geometric distribution �27� de-
termined by the other distances �within-cluster NNDs�. To
avoid the bias introduced by always removing the largest
observations, we can estimate � in Eq. �27� assuming that
the largest k �k
0� distances are missing �but still exist�.
This gives the following maximum-likelihood estimator:

�̂k =

�
i=1

n−k

d�i� + kd�n−k�

�
i=1

n−k

d�i� + kd�n−k� + �n − k�

,

and the mean of the geometric distribution can be estimated
by

�̂k =
�̂k

1 − �̂k

=

�
i=1

n−k

d�i� + kd�n−k�

n − k
.

Note that if one simply removes the largest k distances, the
mean will be �i=1

n−kd�i� / �n−k�, which is always underestimated

compared to �̂k. From the memoryless property of the geo-
metric distribution, the expected value of any of the largest k

distances given �̂k is d�n−k�+ �̂k. Let Kmax be a predetermined
maximal number of components. For k=1, . . . ,Kmax−1, we

compute �̂k and define �k= �d�n−k+1�−d�n−k�� / �̂k as a statistic
to test whether the observed largest k NNDs are significantly
greater than that expected from the other n−k distances. Find
KH=1+max�k��k�	�, with 	=10, as an upper bound for the
number of clusters. Starting from KH potential clusters deter-
mined by SLC, we prune out those potential clusters which
contain less than 50 configurations to generate the final clus-
ters. These final clusters not only have significantly large
distances between each other but also contain enough
samples of configurations. This increases the robustness of
the cluster detection procedure in the BUP algorithm. It is
helpful to clarify that configurations in a cluster are deter-
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mined by the above statistical procedure and thus may not be
connected neighbors. This is especially so at a high-energy
level, for which one can at most obtain sparse samples.

C. Energy landscapes and characterization

We resampled 20% of the configurations from all Monte
Carlo chains in the above EE sampling to estimate the tree
for each realized system. We note that the highest barriers
�the roots� of all the estimated trees for N=100 turned out to
be less than six units from the global minima û0. Since the
configuration space is huge for 100 spin systems, we focused
on a more detailed estimation of the low-energy part between
û0 and û0+6. For each realized system of N=100, we reap-
plied the EE sampler with energy truncation between
�û0 and û0+6� and temperature between �0.4,1� so as to
generate denser configurations in the lower portion of the
energy space. Similarly, 20% of these configurations were
utilized to construct an estimated DG. Summary statistics of
the estimated trees are reported in Table III. For a spin sys-
tem, a local minimum is defined as a configuration for which
energy increases if any of the spins is flipped. We verified all
the identified local minima by this definition and found 98%
of them were true ones. For large N values, our approach
only reconstructed a small portion of the full energy land-
scape, mostly in low-energy ranges as indicated by the sum-
mary statistics of critical energies. However, we want to em-
phasize that the low-energy range is the most interesting and
important part for understanding and characterizing spin-
glass behaviors of the model. In particular, we have esti-
mated DGs for energy between �−0.700N and −0.626N� for
N=40 and �−0.731N and −0.702N� for N=100. We note
that enumerating configurations for these energy ranges is
practically impossible for N
40 and thus, simulating con-
figurations from microcanonical ensembles seems a reason-
able alternative.

As an illustration, we plot four examples of the estimated
trees for various system sizes in Fig. 8. A few general char-
acteristics are observed: �1� the structure of the tree becomes
much more complicated for larger N; �2� the topologies of

the trees are highly asymmetric for all system sizes; and �3�
the depths of the energy barriers seem to decrease for larger
systems. In order to quantify some of these observations, we
use the defined statistics based on LDOS to characterize the
energy landscape.

From the estimated local density of states, we calculated
the average tree entropy over 20 realizations for each system
size. It turns out that the average entropy is less than 1.0 bit
for N=20, 40, and 100 �Table III�. In other words, when
averaged over different energy levels, the uncertainty in de-
termining to which connected microcanonical ensemble a
configuration belongs is lower than the uncertainty in the
outcome of tossing a fair coin, even for a tree with about 100
leaves �such as those with N=100�. Furthermore, the maxi-
mum tree entropy over all the energy levels we sampled,
maxu Str�u� �Eq. �12��, is less than two bits for all the three
sizes of spin glasses �Table III�. These results imply that the
microcanonical ensemble for any given energy level is
mostly dominated by a small number of components with a
much larger volume than the remaining ones. Although there
exist a large number of local minima and local basins, many
of them only occupy a very small portion of the configura-
tion space.

We computed the minimum local escape probability
PLE�T� �Eq. �16�� from the estimated trees and local density
of states for temperature T� �0,4� and plotted the average
curves over 20 realizations in Fig. 9�a�. As expected, when
T→0 all escape probabilities are close to zero since the sys-
tem will be trapped in any local minimum with probability
one. This is consistent with the spin-glass behaviors of the
model at low temperatures. If the temperature increases, the
Boltzmann distribution becomes less rough in the sense that
the probability of a local escape increases. An interesting
phenomenon is that at a given temperature the PLE actually
increases with the system size N. Consequently, the escape
temperature at level 0.5, TE�0.5�, shows a decreasing trend
with the increase of N �Table III�. This implies that in spite
of the existence of many more edges on the tree of a large-
size system, the energy barriers are actually lower compared
to those of a small-size system. In particular, the minimum

TABLE III. Estimation of DGs of the spin-glass model. Note that estimates are followed by � one
standard deviation computed from 20 realizations. Energies of minima and barriers are reported in the unit
of N.

Statistics N=20 N=40 N=100

Number of local minimum 10.2�4.6 20.1�10.1 99.5�59.5

Lowest minimum −0.663�0.045 −0.700�0.040 −0.731�0.021

Median minimum −0.574�0.046 −0.667�0.045 −0.712�0.022

Highest minimum −0.514�0.051 −0.640�0.048 −0.704�0.020

Number of barriers 6.8�3.2 10.2�3.6 52.8�26.7

Lowest barrier −0.600�0.056 −0.676�0.041 −0.724�0.022

Median barrier −0.542�0.040 −0.654�0.042 −0.711�0.021

Highest barrier −0.487�0.046 −0.626�0.045 −0.702�0.020

Str �bits� 0.461�0.194 0.762�0.482 0.707�0.437

max Str�u� �bits� 1.41�0.472 1.99�0.782 1.96�0.744

TE�0.5� 0.905�0.335 0.660�0.157 0.550�0.110
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local escape probability is around 0.7 at the critical tempera-
ture Tc=1 for N=100. This suggests that the spin system is
unlikely to be trapped in a local basin at the critical tempera-
ture, which is consistent with the phase transition from spin
glass to paramagnetic state.

There seems to be a transition point T�� �0,0.5� for local
escape probabilities. For T�T�, PLE�T� is close to zero and
the roughness of the Boltzmann distribution is high. Once
beyond the transition point, the system shows a dramatic
increase in local escape probabilities, especially for large N
�Fig. 9�a��. To quantify this phenomenon, we investigate the
derivative of PLE�T�. From Eq. �15�, the derivative of the
local escape probability on edge i with respect to T is

d

dT
PLE

�i� �T� = V�i� d

dT
� e−Bi/T

Z�i��T� =
PLE

�i� �Bi − U�i��T��
T2 =

�

DPLE
�i� �T� ,

�28�

where U�i��T� is the local energy of the edge �9�. Let mT

=arg mini PLE
�i� �T� be the index of the edge that gives the

minimum local escape probability at temperature T. We de-
fine the derivative of PLE�T� as

DPLE�T� = DPLE
�mT��T� . �29�

Then the maximum of DPLE�T� indicates the transition point
for the minimum local escape probability. As shown in Fig.
9�b�, the peak of the estimated DPLE�T� appears when tem-
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perature approaches T�=0.3 and the transition is sharper for
larger N with a higher maximum derivative. The relation
between this transition temperature and the critical tempera-
ture Tc for phase transition is interesting for future studies.
The observation that T��Tc may be due to the assumption
that a proposed energy increment is uniform in the derivation
of Eq. �14�, which may result in a higher probability for large
energy increase compared to thermal perturbation.

VI. DISCUSSION

From this study, we gained some understanding of the
energy landscape and its relationship to the thermodynamics
of the SK spin-glass model. First, the tree of the energy
landscape remains very asymmetric with small tree entropy
��1 bit� even for N=100. Second, although there exists a
large number of local minima, the basins of many local
minima only occupy a small fraction of the configuration
space and their barriers are usually low. This is one of the
reasons for the observed low escape temperature TE�0.5�.
Third, if we heat up the system from T=0 to a high tempera-
ture, there exists a steep increase in local escape probabilities
before the phase transition at the critical temperature. This
observation links the features of energy landscapes to the
thermodynamics of the spin system. Some of the character-
istics we discovered here, such as asymmetry and low barri-
ers of the DGs, are consistent with previous studies on
smaller systems of N�25 �e.g., �17,20��. Finally, obvious
differences are seen from a crude visual comparison between
the DGs of the SK spin-glass model and those of a structural
glass former �50,51�. But a concrete characterization of
structural glass energy landscapes with tree entropy and local

escape probability awaits further detailed analysis.
The concepts of local density of states, tree entropy, and

local escape probability are very useful for characterizing the
energy landscapes of complicated distributions in different
scientific fields. For the past two decades, many powerful
Monte Carlo methods have been developed and numerous
Monte Carlo samples have been generated to solve various
complicated problems. The concepts and methods proposed
in this paper can be applied to a wide range of problems in
physics, statistics, and computational biology, with the avail-
ability of large-size Monte Carlo samples and the increasing
computing capacity. An interesting future work is to link the
disconnectivity graph and local density of states to Monte
Carlo sampling. For example, the local escape probability is
potentially connected to the convergence and efficiency of a
Metropolis sampler. Given a roughly estimated tree, one may
design a more efficient sampling algorithm to re-explore the
configuration space. Ideally, iteration among sampling, tree
construction, and local density of states estimation has a
great potential to improve the efficiency of Monte Carlo
sampling and energy landscape exploration. However, the
computationally intensive nature of these methods will
present great challenges. Another direction for future work is
to simplify energy landscapes by regrouping local minima
based on thresholding barrier heights �52�, which may be
connected to construction of transition networks for model-
ing molecular dynamics �53�.
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